
MATH 579: Combinatorics
Exam 1 Solutions

1. How many four-letter words, drawn from the usual 26 letters, contain exactly three different
letters?
If there are three different letters, then one letter must be used twice (and the others used
once). There are 26 ways to choose the letter used twice, and

(
4
2

)
= 6 ways to place that

repeated letter. There are 25 ways to fill the first unused space with a different letter, and 24
ways to fill the last space with a different letter. Hence the answer is 26 · 6 · 25 · 24 = 93600.

2. Calculate S(6, 3).

The quickest way is using the explicit formula S(6, 3) = 1
3!
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(−0 + 3− 192 + 729) = 540

6
= 90.

3. How many solutions are there to x1 + x2 + x3 = 30 in nonnegative integers, with x1, x2, x3

distinct?
There are

((
3
30

))
= 496 solutions, ignoring the “distinct” restriction. For any k with 0 ≤ k ≤

15, we can set x1 = x2 = k, and have a unique choice x3 = 30 − 2k to solve the equation.
Hence there are 16 “bad” solutions where x1 = x2. Similarly, there are 16 “bad” solutions
where x1 = x3, and 16 “bad” solutions where x2 = x3. But be careful! If we compute
496 − 3 · 16, we subtract the solution x1 = x2 = x3 = 10 three times. We need to only
subtract it once, so the correct answer is 496− 3 · 16 + 2 = 450.

4. Find a closed formula for S(n, n− 2), for all n ≥ 3. Be sure to prove your answer.

The “typical” part will have a single element from [n]; however there are two “extra” ele-
ments. With the “extras” together, then one part will have three elements, and the rest will
be singletons. There are

(
n
3

)
ways to select the part with three elements. The other case has

two parts of size two, and the rest as singletons. Be careful! If we count as
(
n
2

)(
n−2
2

)
, we are

double-counting {a, b}, {c, d} as different from {c, d}, {a, b}. We need to divide by 2! to cor-
rect this. Combining with the first case, we get
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)
+ 1
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= 5n3−12n2+7n

12
= S(n, n− 2).

5. Let pk(n) denote the number of partitions of n into k parts, and let t ∈ N. Prove that
limn→∞ pn−t(n) exists, and find this limit.

For n sufficiently large (as it happens, n ≥ 2t), we will prove that pn−t(n) = p(t). Take any
partition of n into n − t parts. Remove one from each part. This will be a partition of
n − (n − t) = t into at most n − t, possibly empty, parts. So long as n − t ≥ t, this is
exactly a partition of t into any number of parts. This is reversible; given a partition of t,
we extend to have n − t (possibly empty) parts, then add one to each part. We now have
n − t nonempty parts, and a total of n − t + t = n. Since p(t) is independent of n, this is
equal to the desired limit.

6. Count the number of functions f : A → B, with |A| = a, |B| = b, with the elements of A
identical to each other, and the elements of B identical to each other.
This is one entry of the Twelvefold Way. A function that we’re counting is a partition of
a into at most b parts. If exactly b parts, there are pb(a) such functions. If exactly b − 1
parts, then there are pb−1(a) such functions. There has to be at least one part. Putting it
all together, there are p1(a) + p2(a) + · · ·+ pb(a) such functions.


